- Oggetto:
- Oggetto:
Analisi dei dati A (studenti A-D)
- Oggetto:
Data Analysis A (students A-D)
- Oggetto:
Anno accademico 2022/2023
- Codice attività didattica
- PSI0759
- Docente
- Barbara Lucia Loera (Titolare del corso)
- Corso di studio
- Scienze e tecniche psicologiche
- Anno
- 3° anno
- Periodo
- Primo semestre
- Tipologia
- Fondamentale
- Crediti/Valenza
- 12 (72 ore)
- SSD attività didattica
- M-PSI/03 - psicometria
- Erogazione
- Tradizionale
- Lingua
- Italiano
- Frequenza
- Facoltativa
- Tipologia esame
- esame scritto (verbalizzante)
- Prerequisiti
-
Nozioni base di matematica, statistica descrittiva e inferenziale. In particolare:
a) nozioni matematiche delle scuole secondarie superiori;
b) matrice dei dati, variabili, indici di tendenza centrale,
variabilità e forma;
c) probabilità e inferenza statistica;
d) analisi della relazione fra due variabili (in particolare,
correlazione, covarianza, Chi quadrato e t-test).
Basic notions of statistics (descriptive and inferential). Specifically:
a) basic (secondary school) mathematical knowledge;
b) data matrix, variables, measures of central tendency,
variability and shape;
c) probability and statistical inference;
d) relationship between two variables. - Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
Scopo dell'insegnamento è fornire una comprensione generale dell'Analisi dei dati, con particolare attenzione alle tecniche più usate dagli psicologi/dalle psicologhe per affrontare i due problemi fondamentali della ricerca empirica in Psicologia: la misurazione mentale e l'imputazione causale.
The course aims to provide an advanced understanding of the core principles of Data Analysis. Special attention will be placed on the most frequently used techniques for causal analysis and mental measurement.
- Oggetto:
Risultati dell'apprendimento attesi
a) Conoscere: teoria dei tipi di scala, teoria della misurazione, teoria dei dati, principi di analisi dei dati, tecniche di assegnazione, tecniche multivariate;
b) Padroneggiare alcuni algoritmi di analisi dei dati, con particolare riguardo alle tecniche di misurazione e alle tecniche di analisi causale;
c) Discutere criticamente: un modello causale, la logica di un esperimento statistico, le proprietà psicometriche di uno strumento di misura, la struttura di uno spazio percettivo.a) Knowledge and understanding: theory of scale types, measurement theory, data theory, principles of data analysis, history of data analysis, assignment techniques, multivariate techniques;
b) Applying knowledge and understanding, learning skills: handle causal imputation and measurement data analysis algorithms;
c) Making judgments, communication skills: critically discussing a causal model, the logic of a statistical experiment, the psychometric properties of a measurement device, and the structure of a perceptual space.- Oggetto:
Programma
L'insegnamento è suddiviso in quattro moduli.
- Fondamenti di analisi dei dati (teoria dei dati, tipi di scala, calcolo matriciale, principi di analisi dei dati)
- Tecniche di assegnazione (multidimensional scaling e multidimensional unfolding)
- Tecniche multivariate orientate all'analisi causale (regressione multipla, regressione multivariata, analisi della varianza).
- Tecniche multivariate a variabili nascoste (analisi fattoriale)
The course is divided into four units:
- Foundations of data analysis (data theory, scale types, matrix algebra, principles of data analysis);
- Assignment techniques (multidimensional scaling and multidimensional unfolding);
- Multivariate techniques for causal analysis (multiple regression, multivariate regression, analysis of variance);
- Multivariate techniques with latent variables (factor analysis).
- Oggetto:
Modalità di insegnamento
Lezioni in presenza, esercitazioni carta e penna e/o con l'ausilio di un software statistico, per un totale di 72 ore di corso.
Lecture and pencil-paper and/or computer-based data analysis exercises. Duration 72 hours.
- Oggetto:
Modalità di verifica dell'apprendimento
L’esame è uno scritto verbalizzante realizzato mediante test di 30+1 domande a risposta chiusa, con alternative multiple (risposta corretta 1 punto, risposte errate -0,333), da svolgere in 31 minuti.
The exam is a verbalizing written test of 30 + 1 questions with a closed answer, with multiple alternatives (correct answer 1 point, wrong answers -0,333), to be carried out in 31 minutes.
Erasmus students can arrange an oral exam with the professors if the test in Italian is lower than 18/30.
Testi consigliati e bibliografia
- Oggetto:
Testi di esame:
Luca Ricolfi, Manuale di analisi dei dati. Fondamenti, Bari, Laterza, 2002.
Luca Ricolfi, Silvia Testa, Dispense del corso di Analisi dei dati (fornite dal docente ai soli studenti iscritti al corso).
Any textbook, or set of textbooks, about the same issues (to be agreed with the teacher).
- Oggetto:
Note
Il docente riceve su appuntamento (inviare una mail a barbara.loera@unito.it).
For contact: send an Email to barbara.loera@unito.it
- Registrazione
- Aperta
- Apertura registrazione
- 01/10/2022 alle ore 12:00
- Chiusura registrazione
- 30/09/2023 alle ore 12:00
- Oggetto: