- Oggetto:
- Oggetto:
Analisi dei dati B (studenti M-Z) / Data Analysis B (students M-Z)
- Oggetto:
Data Analysis B (students M-Z)
- Oggetto:
Anno accademico 2020/2021
- Codice dell'attività didattica
- PSI0759
- Docente
- Giorgia Molinengo (Titolare del corso)
- Corso di studi
- Scienze e tecniche psicologiche
- Anno
- 3° anno
- Periodo didattico
- Primo semestre
- Tipologia
- Fondamentale
- Crediti/Valenza
- 12
- SSD dell'attività didattica
- M-PSI/03 - psicometria
- Modalità di erogazione
- A distanza
- Lingua di insegnamento
- Italiano
- Modalità di frequenza
- Facoltativa
- Tipologia d'esame
- esame scritto (non verbalizzante) più esame orale (verbalizzante)
- Prerequisiti
-
Nozioni base di matematica, statistica descrittiva e inferenziale. In particolare:
a) nozioni matematiche delle scuole secondarie superiori;
b) matrice dei dati, variabili, indici di tendenza centrale,
variabilità e forma;
c) probabilità e inferenza statistica;
d) analisi della relazione fra due variabili (in particolare,
correlazione, covarianza, Chi quadrato e t-test).
Basic notions of statistics (descriptive and inferential). Specifically:
a) basic (secondary school) mathematical knowledge;
b) data matrix, variables, measures of central tendency,
variability and shape;
c) probability and statistical inference;
d) relationship between two variables. - Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
Scopo del corso è fornire una comprensione generale dell'Analisi dei dati, con particolare attenzione alle tecniche più usate dagli psicologi per affrontare i due problemi fondamentali della ricerca empirica in Psicologia: la misurazione mentale e l'imputazione causale.
The course aims to provide an advanced understanding of the core principles of Data Analysis. Special attention will be placed on the most frequently used techniques for causal analysis and mental measurement.
- Oggetto:
Risultati dell'apprendimento attesi
a) Conoscere: teoria dei tipi di scala, teoria della misurazione, teoria dei dati, principi di analisi dei dati, tecniche di assegnazione, tecniche multivariate;
b) Padroneggiare alcuni algoritmi di analisi dei dati, con particolare riguardo alle tecniche di misurazione e alle tecniche di analisi causale;
c) Discutere criticamente: un modello causale, la logica di un esperimento statistico, le proprietà psicometriche di uno strumento di misura, la struttura di uno spazio percettivo.
a) Knowledge and understanding: theory of scale types, measurement theory, data theory, principles of data analysis, history of data analysis, assignment techniques, multivariate techniques;
b) Applying knowledge and understanding, learning skills: handle causal imputation and measurement data analysis algorithms;
c) Making judgments, communication skills: critically discussing a causal model, the logic of a statistical experiment, the psychometric properties of a measurement device, and the structure of a perceptual space.
- Oggetto:
Modalità di insegnamento
Lezioni ed esercitazioni in remoto, carta e penna e/o con l'ausilio di un software statistico, per un totale di 72 ore di corso.
Duration 72 hours. Lecture and pencil-paper and/or computer-based data analysis exercises
- Oggetto:
Modalità di verifica dell'apprendimento
IMPORTANTI AGGIORNAMENTI SULLE MODALITÀ DI CONDUZIONE DEGLI ESAMI PER VIA TELEMATICAIn concomitanza con l'emergenza COVID-19, ed in ottemperanza al decreto rettorale rep. 1097/2020 del 20/03/2020, gli esami si terranno secondo le modalità più sotto indicate:- esame scritto non verbalizzante sottoforma di test (domande a risposta chiusa multipla) attraverso l'applicativo Moodle;- colloquio orale verbalizzante mediante la piattaforma Webex per gli studenti che avranno coseguito una valutazione di 18/30 all'esame scritto.Entrambe le prove saranno svolte nelle date degli appelli già previste in calendario.Gli studenti iscritti all'appello saranno avvisati tramite comunicazione sull'indirizzo di posta elettronica istituzionale, dove sarà loro spedito il link di convocazione all'appello telematicoIMPORTANT UPDATES ON THE METHODS OF CONDUCTING THE EXAMINATIONS VIA TELEMATICS
In conjunction with the emergency COVID-19, and in compliance with the rectoral decree rep. 1097/2020 of 20/03/2020, the exams will be held in the manner indicated below:
- written multiple answer test through the Moodle application;
- short concurrent oral examination via the Webex platform.
Both tests will be carried out on the dates already scheduled in the calendar.Students enrolled in the exams will be notified via communication on the institutional email address, where they will be sent the link to the electronic exam.
Erasmus student's have to agree on a oral examination with the professors.
- Oggetto:
Programma
Il corso è suddiviso in quattro moduli.
- Fondamenti di analisi dei dati (teoria dei dati, tipi di scala, calcolo matriciale, principi di analisi dei dati)
- Tecniche di assegnazione (multidimensional scaling e multidimensional unfolding)
- Tecniche multivariate orientate all'analisi causale (regressione multipla, regressione multivariata, analisi della varianza).
- Tecniche multivariate a variabili nascoste (analisi fattoriale)
The course is divided into four units:
- Foundations of data analysis (data theory, scale types, matrix algebra, principles of data analysis);
- Assignment techniques (multidimensional scaling and multidimensional unfolding);
- Multivariate techniques for causal analysis (multiple regression, multivariate regression, analysis of variance);
- Multivariate techniques with latent variables (factor analysis).
Testi consigliati e bibliografia
- Oggetto:
Testi di esame:
Luca Ricolfi, Manuale di analisi dei dati. Fondamenti, Bari, Laterza, 2002 (in particolare Introduzione e capitoli 2, 3, 4).
Luca Ricolfi, Silvia Testa, Dispense del corso di Analisi dei dati fornite dal docente ai soli studenti iscritti al Corso
Any textbook, or set of textbooks, about the same issues (to be agreed with the teacher)
- Oggetto:
Note
Il docente riceve su appuntamento (inviare una mail a giorgia.molinengo@unito.it ).
- Oggetto: